Literature

Adeli, H. (2001). "Neural Networks in Civil Engineering: 1989–2000." Computer-Aided Civil and Infrastructure Engineering 16(2): 126-142.
Alaejos, P. and V. Lanza (2012). "Influence of equivalent reactive quartz content on expansion due to alkali silica reaction." Cement and Concrete Research 42(1): 99-104.
Alexander, M. and S. Mindess (2005). Aggregates in concrete, Taylor & Francis.
Alexander, M. and S. Mindess (2008). Aggregates in concrete. London ; New York, Taylor & Francis.
Allard, B. and C. Sotin (1988). "Determination of mineral phase percentages in granular rocks by image analysis on a microcomputer." Computers & Geosciences 14: 261-269.
Alnaggar, M., G. Cusatis and G. D. Luzio (2013). "Lattice Discrete Particle Modeling (LDPM) of Alkali Silica Reaction (ASR) deterioration of concrete structures." Cement and Concrete Composites 41(0): 45-59.
Ammouche, A., D. Breysse, H. Hornain, O. Didry and J. Marchand (2000). "A new image analysis technique for the quantitative assessment of microcracks in cement-based materials." Cement and Concrete Research 30(1): 25-35.
Ammouche, A., J. Riss, D. Breysse and J. Marchand (2001). "Image analysis for the automated study of microcracks in concrete." Cement and Concrete Composites 23(2-3): 267-278.
Andic-Cakir, O., O. Copuroglu, E. Schlangen and E. Garcia-Diaz (2007). Combined experimental and modelling study on the expansions of concrete microbars due to ASR. Consec07. Tours, France.
ASTM (2001). C1293 - Standard Test Method for Determination of Length Change of Concrete Due to Alkali-Silica Reaction. Concrete and Aggregates. Annual Book of ASTM Standards, ASTM: 6.
Augusti, G. and M. Ciampoli (2008). "Performance-Based Design in risk assessment and reduction." Probabilistic Engineering Mechanics 23(4): 496-508.
Azadeh, A., S. F. Ghaderi, M. Anvari, M. Saberi and H. Izadbakhsh (2007). "An integrated artificial neural network and fuzzy clustering algorithm for performance assessment of decision making units." Applied Mathematics and Computation 187(2): 584-599.
Bakker, J. (2004). Monitoring of ASR expansion and Moisture in concrete. ICAAR 2004: 8.
Bangert, F., D. Kuhl and G. Meschke (2004). "Chemo-hygro-mechanical modelling and numerical simulation of concrete deterioration caused by alkali-silica reaction." International Journal for Numerical and Analytical Methods in Geomechanics 28(7-8): 689-714.
Bazant, Z. P. and A. Steffens (2000). "Mathematical model for kinetics of alkali-silica reaction in concrete." Cement and Concrete Research 30(3): 419-428.
Benmore, C. J. and P. J. M. Monteiro (2010). "The structure of alkali silicate gel by total scattering methods." Cement and Concrete Research 40(6): 892-897.
Bentz, D. P. and E. J. Garboczi (1991). "Percolation of phases in a three-dimensional cement paste microstructural model." Cement and Concrete Research 21(2-3): 325-344.
Bérubé, M.-A., J. Duchesne, J. F. Dorion and M. Rivest (2002). "Laboratory assessment of alkali contribution by aggregates to concrete and application to concrete structures affected by alkali-silica reactivity." Cement and Concrete Research 32(8): 1215-1227.
Bérubé, M.-A., B. Durand, D. Vézina and B. Fournier (2000). "Alkali–aggregate reactivity in Québec (Canada)." Canadian Journal of Civil Engineering 27(2): 20.
Bérubé, M.-a., B. Fournier and T. Côté (2012). USING THE DAMAGE RATING INDEX FOR ASSESSING FREEZE-THAW , SULPHATE ATTACK , OR ASR. 14th International Conference on Alkali-Aggregate Reaction, Austin, Texas.
Bérubé, M.-A., J. FRENETTE, A. PEDNEAULT and M. RIVEST (2002). Laboratory assessment of the potential rate of ASR expansion of field concrete. West Conshohocken, PA, ETATS-UNIS, American Society for Testing and Materials.
Bérubé, M.-A., N. Smaoui, B. Fournier, B. Bissonnette and B. Durand (2005). "Evaluation of the expansion attained to date by concrete affected by alkali–silica reaction. Part III: Application to existing structures." Canadian Journal of Civil Engineering 32(3): 463-479.
Binal, A. (2008). "The determination of gel swelling pressure of reactive aggregates by ASGPM device and a new reactive-innocuous aggregate decision chart." Construction and Building Materials 22(1): 1-13.
Bragg, D. (2000). "Alkali–aggregate reactivity in Newfoundland, Canada." Canadian Journal of Civil Engineering 27(2): 12.
Breugel, K. V. (1991). Simulation of Hydration and Formation of Structure in Hardening Cement Based Materials. PhD PhD, Delft university of Technology.
Bulteel, D., E. Garcia-Diaz, C. Vernet and H. Zanni (2002). "Alkali-silica reaction: A method to quantify the reaction degree." Cement and Concrete Research 32(8): 1199-1206.
Capra, B. and J. P. Bournazel (1998). Modeling of Induced Mechanical Effects of Alkali-Aggregate Reactions. Cement and Concrete Research. 28: 251-260.
Capra, B. and A. Sellier (2003). "Orthotropic modelling of alkali-aggregate reaction in concrete structures: numerical simulations." Mechanics of Materials 35(8): 817-830.
Carles-Gibergues, A. and M. Cyr (2002). "Interpretation of expansion curves of concrete subjected to accelerated alkali-aggregate reaction (AAR) tests." Cement and Concrete Research 32(5): 691-700.
Castro, N. (2012). Alkali-aggregate reactions in concrete: study of the relationship between aggregate petrographic properties versus expansion tests, Norwegian University of Science and Technology.
Castro, N., B. Sorensen and M. T. M. Broekmans (2012). Assessment of Individual ASR-Aggregate Particles by XRD. Proceedings of the 10th International Congress for Applied Mineralogy (ICAM). M. A. T. M. Broekmans, Springer Berlin Heidelberg: 95-102.
Castro, N. and B. J. Wigum (2012). "Assessment of the potential alkali-reactivity of aggregates for concrete by image analysis petrography." Cement and Concrete Research 42(12): 1635-1644.
Castro, N. and B. J. Wigum (2012). Grain Size Analysis of Quartz in Potentially Alkali-Reactive Aggregates for Concrete: A Comparison Between Image Analysis and Point-Counting. Proceedings of the 10th International Congress for Applied Mineralogy (ICAM), Springer.
Chappex, T. and K. Scrivener (2012). "Alkali fixation of C–S–H in blended cement pastes and its relation to alkali silica reaction." Cement and Concrete Research 42(8): 1049-1054.
Charpin, L. and A. Ehrlacher (2012). "A computational linear elastic fracture mechanics-based model for alkali–silica reaction." Cement and Concrete Research 42(4): 613-625.
Chatterji, S. and P. Christensen (1990). "Studies of alkali-silica reaction. Part 7. Modelling of expansion." Cement and Concrete Research 20(2): 285-290.
Chatterji, S., A. D. Jensen, N. Thaulow and P. Christensen (1986). "Studies of alkali-silica reaction. Part 3. Mechanisms by which NaCl and Ca(OH)2 affect the reaction." Cement and Concrete Research 16(2): 246-254.
Chatterji, S., N. Thaulow and A. D. Jensen (1987). "Studies of alkali-silica reaction. Part 4. Effect of different alkali salt solutions on expansion." Cement and Concrete Research 17(5): 777-783.
Chatterji, S., N. Thaulow and A. D. Jensen (1988). "Studies of alkali-silica reaction, part 6. Practical implications of a proposed reaction mechanism." Cement and Concrete Research 18(3): 363-366.
Chen, J. J., L. Sorelli, M. Vandamme, F. J. Ulm and G. Chanvillard (2010). "A Coupled Nanoindentation/SEM‐EDS Study on Low Water/Cement Ratio Portland Cement Paste: Evidence for C–S–H/Ca (OH) 2 Nanocomposites." Journal of the American Ceramic Society 93(5): 1484-1493.
Choi, S. and S. Shah (1997). "Measurement of deformations on concrete subjected to compression using image correlation." Experimental Mechanics 37(3): 307-313.
Chrisp, T., P. Waldron and J. Wood (1993). "Development of a non-destructive test to quantify damage in deteriorated concrete." Magazine of Concrete Research 45(165): 247-256.
Comby-Peyrot, I., F. Bernard, P.-O. Bouchard, F. Bay and E. Garcia-Diaz (2009). "Development and validation of a 3D computational tool to describe concrete behaviour at mesoscale. Application to the alkali-silica reaction." Computational Materials Science 46(4): 1163-1177.
Comi, C., R. Fedele and U. Perego (2009). "A chemo-thermo-damage model for the analysis of concrete dams affected by alkali-silica reaction." Mechanics of Materials 41(3): 210-230.
Constantinides, G., F. J. Ulm and K. Vliet (2003). "On the use of nanoindentation for cementitious materials." Materials and Structures 36(3): 191-196.
Copuroglu, O. (2010). "Effect of Silica Dissolution on the Mechanical Characteristics of Alkali-Reactive Aggregates." Journal of Advanced Concrete Technology 8(1): 5-14.
Copuroglu, O. and E. Schlangen (2007). "Modelling of effect of ASR on concrete microstructure." Advances in Fracture and Damage Mechanics VI 348-349: 809-812.
Çopuroğlu, O. and E. Schlangen (2008). "Modeling of frost salt scaling." Cement and Concrete Research 38(1): 27-39.
Criaud, A., C. Defossé, B. Chabanis, L. Debray, B. Michel, D. Sorrentino, M. Gallias, M. Salomon, S. Guédon and A. Le Roux (1994). "The french standard methods for evaluating the reactivity of aggregates with respect to AAR: results of an inter-laboratory program." Cement and Concrete Composites 16(3): 199-206.
Crouch, R. S. and J. G. M. Wood (1990). "Damage evolution in AAR affected concretes." Engineering Fracture Mechanics 35(1–3): 211-218.
Crucq, P. (2005). Development of a method to measure the mechanical behavior of ASR gels. Part I: Literature Study; Alkali-silica reaction, causes, effects and prevention, Internal publication TU Delft.
Crucq, P. (2005). "Development of a method to measure the mechanical behavior of ASR gels. Part II: Experimental Research; Simulating Alkali-silica reaction by immersing reactive aggregate in NaOH."
Cyr, M. and A. Carles-Gibergues (2002). "Normalized age applied to AAR occurring in concretes with or without mineral admixtures." Cement and Concrete Research 32(11): 1771-1782.
Dahl, P., I. Meland and V. Jensen (1992). Norwegian Experience with Different Test Methods for Alkali-Aggressive Reactivity. Proceedings of the Ninth International Conference on Alkali Aggregate Reaction in Concrete, London, UK, Concrete Society publication.
Dahl, P. A., J. Lindgard, R. Kompen, C. Hagby, B. Pedersen, T. F. Renning and S. W. Danielsen (2008). DURABLE CONCRETE WITH ALKALI REACTIVE AGGREGATES. NB Publication Series. B. J. Wigum. Trondheim. 21: 38.
Davies, G. and R. E. Oberholster (1987). An interlaboratory test programme on the NBRI accelerated test to determine the alkali reactivity of aggregates. National Building Research Institute. Council of Scientific and industrial Research (CSIR) Special Report BOU 92. Pretoria, Council of Scientific and industrial Research: 16.
DeMerchant, D. P., B. Fournier and F. Strang (2000). "Alkali–aggregate research in New Brunswick." Canadian Journal of Civil Engineering 27(2): 14.
Dent Glasser, L. and N. Kataoka (1981). "The chemistry of ‘alkali-aggregate’reaction." Cement and Concrete Research 11(1): 1-9.
Diamond, S. (1997). "Alkali silica reactions — Some paradoxes." Cement and Concrete Composites 19(5–6): 391-401.
Dron, R. and F. Brivot (1992). "Thermodynamic and kinetic approach to the alkali-silica reaction. Part 1: Concepts." Cement and Concrete Research 22(5): 941-948.
Dron, R. and F. Brivot (1993). "Thermodynamic and kinetic approach to the alkali-silica reaction. Part 2: Experiment." Cement and Concrete Research 23(1): 93-103.
Duchesne, J. and M.-A. Bérubé (2001). "Long-term effectiveness of supplementary cementing materials against alkali-silica reaction." Cement and Concrete Research 31(7): 1057-1063.
Duchesne, J. and M. A. Bérubé (1994). "The effectiveness of supplementary cementing materials in suppressing expansion due to ASR: Another look at the reaction mechanisms part 1: Concrete expansion and portlandite depletion." Cement and Concrete Research 24(1): 73-82.
Dunant, C., A. Guidoum and K. Scrivener (2008). MICRO-MECHANICAL MODELLING OF ASR. 13th International Conference on Alkali-Aggregate Reaction in Concrete international conference on alkali Aggregate Reaction.
Dunant, C. F. and K. L. Scrivener (2010). "Micro-mechanical modelling of alkali-silica-reaction-induced degradation using the AMIE framework." Cement and Concrete Research 40(4): 517-525.
Dunant, C. F. and K. L. Scrivener (2012). "Effects of aggregate size on alkali–silica-reaction induced expansion." Cement and Concrete Research 42(6): 745-751.
Eliáš, J. and H. Stang (2012). "Lattice modeling of aggregate interlocking in concrete." International journal of fracture 175(1): 1-11.
Erik, S. (1993). Experimental and numerical analysis of fracture processes in concrete. PhD PhD, Delft University of Technology.
Farage, M., J. Alves and E. Fairbairn (2004). "Macroscopic model of concrete subjected to alkali-aggregate reaction." Cement and Concrete Research 34: 495-505.
Feldman, R. and P. Sereda (1968). "A model for hydrated Portland cement paste as deduced from sorption-length change and mechanical properties." Materials and Structures 1(6): 509-520.
Feret, B. and C. F. Feret (1999). "CemQUANT® software Mathematical modeling in quantitative phase analysis of Portland cement." Cement and Concrete Research 29(10): 1627-1633.
Fernandes, I., F. Noronha and M. Teles (2004). "Microscopic analysis of alkali–aggregate reaction products in a 50-year-old concrete." Materials Characterization 53(2): 295-306.
Fernández-Jiménez, A., J. G. Palomo and F. Puertas (1999). "Alkali-activated slag mortars: Mechanical strength behaviour." Cement and Concrete Research 29(8): 1313-1321.
Ferraris, C. F. (1995). Alkali-Silica Reaction and high Performance Concrete. Gaitherbourg, National Institute of Standards and Technology: 24.
Ferraris, C. F., E. J. Garboczi, F. L. Davis and J. R. Clifton (1996). Stress Due to Alkali-Silica Reaction in Mortars. Materials Engineering Conference, New York, American Society of Civil Engineers.
Ferraris, C. F., E. J. Garboczi, F. L. Davis and J. R. Clifton (1997). "The effect of stress relaxation, self-desiccation, and water absorption on the alkali-silica reaction in low water/cement ratio mortars." Cement and Concrete Research 27(10): 1553-1560.
Fordos, Z., S. Chatterjee and N. Thaulow (2009). Alkali-silica reaction: Danish experience. The Alkali-Silica Reaction in Concrete, Routledge. null.
Fournier, B. and M.-A. Berube (2000). "Alkali-aggregate reaction in concrete: a review of basic concepts and engineering implications." Canadian Journal of Civil Engineering 27(2).
Fournier, B., J. H. Ideker, K. J. Folliard, M. D. A. Thomas, P.-C. Nkinamubanzi and R. Chevrier (2009). "Effect of environmental conditions on expansion in concrete due to alkali-silica reaction (ASR)." Materials Characterization 60(7): 669-679.
Fujii, M., K. Kobayashi, T. Kojima and H. Maehara (1986). The static and dynamic behavior of reinforced concrete beams with cracking due to alkali–silica reaction. Proceedings of the 7th International Conference on Alkali–Aggregate Reaction, Noyes Publications, Park Ridge, New Jersey.
Gao, X. X., S. Multon, M. Cyr and A. Sellier (2013). "Alkali–silica reaction (ASR) expansion: Pessimum effect versus scale effect." Cement and Concrete Research 44(0): 25-33.
Garboczi, E. J. (2002). "Three-dimensional mathematical analysis of particle shape using X-ray tomography and spherical harmonics: Application to aggregates used in concrete." Cement and Concrete Research 32(10): 1621-1638.
Garcı́a del Amo, D. and B. Calvo Pérez (2001). "Diagnosis of the alkali-silica reactivity potential by means of digital image analysis of aggregate thin sections." Cement and Concrete Research 31(10): 1449-1454.
Garcia-Diaz, E., J. Riche, D. Bulteel and C. Vernet (2006). "Mechanism of damage for the alkali-silica reaction." Cement and Concrete Research 36(2): 395-400.
Georgopoulos, A., A. Loizos and A. Flouda (1995). "Digital image processing as a tool for pavement distress evaluation." ISPRS Journal of Photogrammetry and Remote Sensing 50(1): 23-33.
Ghanem, H., D. Zollinger and R. Lytton (2010). "Predicting ASR aggregate reactivity in terms of its activation energy." Construction and Building Materials 24(7): 1101-1108.
Gillott, J. and C. Rogers (1994). "Alkali–aggregate reaction and internal release of alkalis." Magazine of Concrete Research 46(167): 99-112.
Gillott, J. and E. Swenson (1969). "Mechanism of the alkali-carbonate rock reaction." Quarterly Journal of Engineering Geology 2(1): 7-23.
Giovanni Di Luzio, Mohammed Alnaggar and Gianluca Cusatis (2012). Lattice discrete particle modeling of alkali-silica-reaction effects to concrete structures. SSCS. Aix en Provence, France.
Glasser, F. (2009). Chemistry Of The Alkali aggregate Reaction. The Alkali-Silica Reaction in Concrete, Routledge. null.
Godart, B., M. Rooij and J. M. Wood (2013). Severity Investigation. Guide to Diagnosis and Appraisal of AAR Damage to Concrete in Structures. B. Godart, M. de Rooij and J. G. M. Wood, Springer Netherlands. 12: 65-78.
Goltermann, P. (1995). "Mechanical Predictions of Concrete Deterioration--Part 2: Classification of Crack Patterns." ACI Materials Journal-American Concrete Institute 92(1): 58-63.
Grattan-Bellew, P. (1996). "Microstructural investigation of deteriorated Portland cement concretes." Construction and Building Materials 10(1): 3-16.
Grattan-Bellew, P. (2009). Alkali-silica reaction: Canadian experience. The Alkali-Silica Reaction in Concrete, Routledge. null.
Grattan-Bellew, P. E. (1995). "Laboratory Evaluation of Alkali-Silica Reaction in Concrete from Saunders Generating Station." Materials Journal 92(2): 9.
Grattan-Bellew, P. E. and A. Danay (1992). Comparison of laboratory and field evaluation of alkali- silica reaction in large dams. International Conference on Concrete Alkali-aggregate Reactions in Hydroelectric Plants and Dams, Frederiction, New Brunswick, Canada.
Grimal, E., A. Sellier, S. Multon, Y. Le Pape and E. Bourdarot (2010). "Concrete modelling for expertise of structures affected by alkali aggregate reaction." Cement and Concrete Research 40(4): 502-507.
Hagelia, P. (2004). Origin of map cracking in view of the distribution of air voids, strength and ASR gel. International conference on Alkali-Aggregate reaction in concrete. Beijing, China. 12.
Haha, M. B., E. Gallucci, A. Guidoum and K. L. Scrivener (2007). "Relation of expansion due to alkali silica reaction to the degree of reaction measured by SEM image analysis." Cement and Concrete Research 37(8): 1206-1214.
Hanson, W. (1944). Studies Relating To the Mechanism by Which the Alkali-Aggregate Reaction Produces EXPANSION IN CONCRETE. ACI Journal Proceedings, ACI.
Haugen, M., J. Lindgård, U. Åkesson and B. Schouenborg (2008). EXPERIENCE FROM USING THE RILEM AAR-1 PETROGRAPHIC METHOD AMONG EUROPEAN PETROGRAPHERS–PART OF THE PARTNER PROJECT. 13th International Conference on Alkali-Aggregate Reaction in Concrete (ICAAR), Trondheim.
Heilbronner, R. (2000). "Automatic grain boundary detection and grain size analysis using polarization micrographs or orientation images." Journal of Structural Geology 22(7): 969-981.
Helmuth, R. and D. Stark (1992). "Alkali-silica reactivity mechanisms." Materials Science of Concrete, The American Ceramic Society, Ohio, USA 3: 131-208.
Helmuth, R., D. Stark, S. Diamond and M. Moranville-Regourd (1993). "Alkali-silica reactivity: an overview of research." Contract 100: 202.
Herve, E. and A. Zaoui (1993). "n-Layered inclusion-based micromechanical modelling." International Journal of Engineering Science 31(1): 1-10.
Hester, D., C. McNally and M. Richardson (2005). "A study of the influence of slag alkali level on the alkali-silica reactivity of slag concrete." Construction and Building Materials 19(9): 661-665.
Hobbs, D. W. (1988). Alkali-silica reaction in concrete, Telford.
Hooton, R. D. and C. A. Rogers (1993). "Development of the NBRI rapid mortar bar test leading to its use in North America." Construction and Building Materials 7(3): 145-148.
Hughes, J. J. and P. Trtik (2004). "Micro-mechanical properties of cement paste measured by depth-sensing nanoindentation: a preliminary correlation of physical properties with phase type." Materials Characterization 53(2–4): 223-231.
Ichikawa, T. (2009). "Alkali-silica reaction, pessimum effects and pozzolanic effect." Cement and Concrete Research 39(8): 716-726.
Ichikawa, T. and M. Miura (2007). "Modified model of alkali-silica reaction." Cement and Concrete Research 37(9): 1291-1297.
Ideker, J. H., A. F. Bentivegna, K. J. Folliard and M. C. Juenger (2012). "Do Current Laboratory Test Methods Accurately Predict Alkali-Silica Reactivity?" Aci Materials Journal 109(4).
Igathinathane, C., L. O. Pordesimo, E. P. Columbus, W. D. Batchelor and S. R. Methuku (2008). "Shape identification and particles size distribution from basic shape parameters using ImageJ." Computers and Electronics in Agriculture 63(2): 168-182.
International, C. S. A. (2000). A864-00 Guide to the Evaluation and management of concrete Structures affected by Alkali-Aggregate reaction.
Islam, M. S. and N. Ghafoori (2013). "Evaluation of Alkali-Silica Reactivity Using Aggregate Geology, Expansion Limits of Mortar Bars and Concrete Prisms, and Kinetic Model." Journal of Materials Science Research 2(2): p103.
Islam, M. S. and N. Ghafoori (2013). "Evaluation of alkali–silica reactivity using ASR kinetic model." Construction and Building Materials 45(0): 270-274.
Ito, A., Y. Aoki and S. Hashimoto (2002). Accurate extraction and measurement of fine cracks from concrete block surface image. IECON 02 [Industrial Electronics Society, IEEE 2002 28th Annual Conference of the], IEEE.
Jana, D. (2007). A Round Robin Test on Measurements of Air Void Parameters in Hardened Concrete by Various Automated Image Analyses and ASTM C 457 Methods. Proceedings of 29th Conference on Cement Microscopy.
Jensen, A. D., S. Chatterji, P. Christensen and N. Thaulow (1984). "Studies of alkali-silica reaction -- part II effect of air-entrainment on expansion." Cement and Concrete Research 14(3): 311-314.
Jensen, V. (1993). Alkali aggregate reaction in Southern Norway: doctor technicae thesis 1993, Division of geology and mineral resources engineering; The Norwegian Institute of Technology, University of Trondheim.
Jensen, V. (2012). RECLASSIFICATION OF ALKALI AGGREGATE REACTION. 14th International Conference on Alkali Aggregate Reaction. T. Drimalas, J. Ideker and B. Fournier. Austin, Texas, USA. 1: 10.
Jensen, V. and G. Lorenzi (1999). "RILEM petrographic method for analysis of alkali reactive concrete aggregates." Proceedings of the 7th Euroseminar on Microscopy Applied to Building Materials: 143-153.
Jensen, V. and T. Sibbick (2001). "RILEM petrographic method: practical use and comparison with other petrographic methods in use." Proceedings of the 8th Euroseminar on Microscopy Applied to Building Materials, Athens, Greece: 579-586.
Jones, A. and L. Clark (1998). "The effects of ASR on the properties of concrete and the implications for assessment." Engineering structures 20(9): 785-791.
Kabir, S. (2010). "Imaging-based detection of AAR induced map-crack damage in concrete structure." NDT & E International 43(6): 461-469.
Kagimoto, H. and M. Kawamura (2011). "Measurements of strain and humidity within massive concrete cylinders related to the formation of ASR surface cracks." Cement and Concrete Research 41(8): 808-816.
Katayama, T., M. Tagami, Y. Sarai, S. Izumi and T. Hira (2004). "Alkali-aggregate reaction under the influence of deicing salts in the Hokuriku district, Japan." Materials Characterization 53(2-4): 105-122.
Kawakata, H., A. Cho, T. Kiyama, T. Yanagidani, K. Kusunose and M. Shimada (1999). "Three-dimensional observations of faulting process in Westerly granite under uniaxial and triaxial conditions by X-ray CT scan." Tectonophysics 313(3): 293-305.
Kawamura, M. (2007). "Estimation of critical free expansions related to surface cracking in ASR-affected concretes." Cement and Concrete Composites 29(4): 324-329.
Kawamura, M. and K. Iwahori (2004). "ASR gel composition and expansive pressure in mortars under restraint." Cement and Concrete Composites 26(1): 47-56.
Ke, J. and M. Deng (2008). STUDY OF CONCRETE EXPANSION DUE TO ASR BASED ON BP NEURAL NETWORKS. 13th International Conference on Alkali-Aggregate Reaction in Concrete international conference on alkali Aggregate Reaction.
Kim, S.-M. and R. K. Abu Al-Rub (2011). "Meso-scale computational modeling of the plastic-damage response of cementitious composites." Cement and Concrete Research 41(3): 339-358.
Kodjo, A., P. Rivard, F. Cohen-Tenoudji and J. L. Gallias (2009). "Evaluation of damages due to alkali-silica reaction with nonlinear acoustics techniques." Proceedings of Meetings on Acoustics 7(1): 045003-045010.
Kumar, R. and B. Bhattacharjee (2003). "Porosity, pore size distribution and in situ strength of concrete." Cement and Concrete Research 33(1): 155-164.
Lafsson, H. (2009). Alkali-silica reaction:Icelandic experience. The Alkali-Silica Reaction in Concrete, Routledge. null.
Lane, D. S. and C. Ozyildirim (1999). "Preventive measures for alkali-silica reactions (binary and ternary systems)." Cement and Concrete Research 29(8): 1281-1288.
Lanza, V. and P. Alaejos (2012). "Optimized Gel Pat Test for Detection of Alkali-Reactive Aggregates." ACI Materials Journal 109(4).
Larive, C., A. Laplaud and O. Coussy (2000). "The role of water in alkali-silica reaction." Alkali-aggregate reaction in concrete: 61-69.
Leemann, A. and L. Holzer (2005). "Alkali-aggregate reaction--identifying reactive silicates in complex aggregates by ESEM observation of dissolution features." Cement and Concrete Composites 27(7-8): 796-801.
Leemann, A. and P. Lura (2013). "E-modulus of the alkali–silica-reaction product determined by micro-indentation." Construction and Building Materials 44(0): 221-227.
Leemann, A. and C. Merz (2012). AN ATTEMPT TO VALIDATE THE CONCRETE PERFORMANCE TEST WITH THE DEGREE OF AAR-INDUCED DAMAGE OBSERVED IN CONCRETE STRUCTURES. 14th International Conference on Alkali Aggregate Reaction, Austin, Texas.
Leemann, A. and C. Merz (2013). "An attempt to validate the ultra-accelerated microbar and the concrete performance test with the degree of AAR-induced damage observed in concrete structures." Cement and Concrete Research 49(0): 29-37.
Léger, P., P. Côté and R. Tinawi (1996). "Finite element analysis of concrete swelling due to alkali-aggregate reactions in dams." Computers & Structures 60(4): 601-611.
Li, K. and O. Coussy (2004). "Numerical assessment and prediction method for the chemico-mechanical deterioration of ASR-affected concrete structures." Canadian Journal of Civil Engineering 31(3): 432-439.
Lilliu, G. and J. G. M. van Mier (2003). "3D lattice type fracture model for concrete." Engineering Fracture Mechanics 70(7-8): 927-941.
Lindgård, J. (2013). Alkali‐silica reaction (ASR) – Performance testing PhD PhD, Norwegian University of Science and Technology.
Lindgård, J., Ö. Andiç-Çakır, I. Fernandes, T. F. Rønning and M. D. A. Thomas (2012). "Alkali–silica reactions (ASR): Literature review on parameters influencing laboratory performance testing." Cement and Concrete Research 42(2): 223-243.
Lindgård, J., P. J. Nixon, I. Borchers, B. Schouenborg, B. J. Wigum, M. Haugen and U. Åkesson (2010). "The EU "PARTNER" Project -- European standard tests to prevent alkali reactions in aggregates: Final results and recommendations." Cement and Concrete Research 40(4): 611-635.
Lindgård, J., E. J. Sellevold, M. D. A. Thomas, B. Pedersen, H. Justnes and T. F. Rønning (2013). "Alkali–silica reaction (ASR)—performance testing: Influence of specimen pre-treatment, exposure conditions and prism size on concrete porosity, moisture state and transport properties." Cement and Concrete Research 53(0): 145-167.
Lindgård, J., M. D. Thomas, E. J. Sellevold, B. Pedersen, Ö. Andiç-Çakır, H. Justnes and T. F. Rønning (2013). "Alkali–silica reaction (ASR)—performance testing: Influence of specimen pre-treatment, exposure conditions and prism size on alkali leaching and prism expansion." Cement and Concrete Research 53: 68-90.
Litorowicz, A. (2006). "Identification and quantification of cracks in concrete by optical fluorescent microscopy." Cement and Concrete Research 36(8): 1508-1515.
Lorenzi, G., J. Jensen, B. J. Wigum, M. Sibbick, M. Haugen, S. Guédon and U. Åkesson (2006). Petrographic Atlas of the Potentially Alkali-Reactive Rocks in Europe. Brussels: 63.
Lu, D., B. Fournier and P. E. Grattan-Bellew (2006). "Evaluation of accelerated test methods for determining alkali-silica reactivity of concrete aggregates." Cement and Concrete Composites 28(6): 546-554.
Maekawa, K., R. Chaube and T. Kishi (1999). Modelling of concrete performance: hydration, microstructure & mass transport London, Routledge.
Maraghechi, H., S.-M.-H. Shafaatian, G. Fischer and F. Rajabipour (2012). "The role of residual cracks on alkali silica reactivity of recycled glass aggregates." Cement and Concrete Composites 34(1): 41-47.
Marzouk, H. and S. Langdon (2003). "The effect of alkali-aggregate reactivity on the mechanical properties of high and normal strength concrete." Cement and Concrete Composites 25(4-5): 549-556.
Mather, B. (1999). "How to make concrete that will not suffer deleterious alkali-silica reaction." Cement and Concrete Research 29(8): 1277-1280.
Mavriplis, D. J. (1992). An advancing front Delaunay triangulation algorithm designed for robustness, DTIC Document.
Mazars, J. (1986). "A description of micro- and macroscale damage of concrete structures." Engineering Fracture Mechanics 25(5–6): 729-737.
McGowan, J. and H. Vivian (1952). "Studies in cement-aggregate reaction. 20. The correlation between crack development and expansion of mortar." Australian Journal of Applied Science 3(3).
Meng, S. X. and J. B. Maynard (2001). "Use of statistical analysis to formulate conceptual models of geochemical behavior: water chemical data from the Botucatu aquifer in São Paulo state, Brazil." Journal of Hydrology 250(1-4): 78-97.
Mertens, G. and J. Elsen (2006). "Use of computer assisted image analysis for the determination of the grain-size distribution of sands used in mortars." Cement and Concrete Research 36(8): 1453-1459.
Merz, C. and A. Leemann (2013). "Assessment of the residual expansion potential of concrete from structures damaged by AAR." Cement and Concrete Research 52(0): 182-189.
Moen, K. (2006). Quantitative measurements of mineral microstructures. PhD, Norwegian University of Science and Technology.
Mohamed, O. A., K. L. Rens and J. J. Stalnaker (2001). "Time Effect of Alkali-Aggregate Reaction on Performance of Concrete." Journal of Materials in Civil Engineering 13(2): 143-151.
Mora, C. F. and A. K. H. Kwan (2000). "Sphericity, shape factor, and convexity measurement of coarse aggregate for concrete using digital image processing." Cement and Concrete Research 30(3): 351-358.
Moranville-Regourd, M. (1997). "Modelling of expansion induced by ASR -- New approaches." Cement and Concrete Composites 19(5-6): 415-425.
Mouret, M., E. Ringot and A. Bascoul (2001). "Image analysis: a tool for the characterisation of hydration of cement in concrete – metrological aspects of magnification on measurement." Cement and Concrete Composites 23(2–3): 201-206.
Mullick, A. (2009). Alkali-silica reaction:Indian experience. The Alkali-Silica Reaction in Concrete, Routledge. null.
Multon, S., F.-X. Barin, B. Godart and F. Toutlemonde (2008). Estimation of the Residual Expansion of Concrete Affected by Alkali Silica Reaction, ASCE.
Multon, S., M. Cyr, A. Sellier, P. Diederich and L. Petit (2010). "Effects of aggregate size and alkali content on ASR expansion." Cement and Concrete Research 40(4): 508-516.
Nesse, W. D. (2000). Introduction to mineralogy, Oxford University Press New York, NY, USA:.
Neville, A. M. (1995). Properties of Concrete. Harlow, Essex, Longman Group.
Nixon, P. and I. Sims (1996). "Testing aggregates for alkali-reactivity." Materials and Structures 29(6): 323-334.
Noguchi, T. and K. Nemati (1995). "Relationship between compressive strength and modulus of elasticity of high strength concrete." Journal of Structural and Construction Engineering 474: 1-10.
Ono, K., K. Kobayashi, T. Miyagawa, T. Kojima, K. Nakano, K. Okada, M. Kawamura and S. Nishibayashi (2009). Alkali-silica reaction:Japanese experience. The Alkali-Silica Reaction in Concrete, Routledge. null.
Perkins, T. and L. Kern (1961). "Widths of hydraulic fractures." Journal of Petroleum Technology 13(9): 937-949.
Peterson, K. W., R. Swartz, L. Sutter and T. Van Dam (2001). "Air void analysis of hardened concrete with a flatbed scanner." Journal of the Transportation Research Board(1775): 36-43.
Pike, R. (1958). "Pressures developed in cement pastes and mortars by the alkali-aggregate reaction." Highway Research Board Bulletin.
Poole, A. (1992). Introduction to alkali-aggregate reaction in concrete. Congress on Alkali-Silica Reaction in Concrete, Swamy, RN (eds.), New York, USA.
Poole, A. (2009). Introduction To Alkali-aggregate Reaction In Concrete. The Alkali-Silica Reaction in Concrete, Routledge. null.
Powers, T. C. and H. H. Steinour (1955). An Interpretation of Some Published Researches on the Alkali-Aggregate Reaction Part 1-The Chemical Reactions and Mechanism of Expansion. ACI Journal Proceedings, ACI.
Prezzi, M., P. J. M. Monteiro and G. Sposito (1997). "The Alkali-Silica Reaction, Part I: Use of the Double-Layer Theory to Explain the Behavior of Reaction-Product Gels." ACI MATERIALS JOURNAL 72: 646-2856.
Prince, W., G. Castanier and J. L. Giafferi (2001). "Similarity between alkali–aggregate reaction and the natural alteration of rocks." Cement and Concrete Research 31(2): 271-276.
Qi, C., J. Weiss and J. Olek (2003). "Characterization of plastic shrinkage cracking in fiber reinforced concrete using image analysis and a modified Weibull function." Materials and Structures 36(6): 386-395.
Qian, Z., E. Schlangen and G. Ye (2013). Modeling Fracture Processes in Numerical Concrete. ICF13.
Reinhardt, H. W. and O. Mielich (2011). "A fracture mechanics approach to the crack formation in alkali-sensitive grains." Cement and Concrete Research 41(3): 255-262.
Richardson, M. G. (2002). Alkali silica reaction. Modern Concrete Technology: Fundamentals of durable reinforced concrete. A. Bentur and S. Mindess. London, Spon Press: 254.
Ringot, E. and A. Bascoul (2001). "About the analysis of microcracking in concrete." Cement and Concrete Composites 23(2-3): 261-266.
Rivard, P. and G. Ballivy (2005). "Assessment of the expansion related to alkali-silica reaction by the Damage Rating Index method." Construction and Building Materials 19(2): 83-90.
Rivard, P., M.-A. Bérubé, G. Ballivy and J.-P. Ollivier (2003). "Effect of drying-rewetting on the alkali concentration of the concrete pore solution." Cement and Concrete Research 33(6): 927-929.
Rivard, P., J.-P. Ollivier and G. Ballivy (2002). "Characterization of the ASR rim: Application to the Potsdam sandstone." Cement and Concrete Research 32(8): 1259-1267.
Rodrigues, F. A., P. J. Monteiro and G. Sposito (1999). "The alkali-silica reaction: The surface charge density of silica and its effect on expansive pressure." Cement and Concrete Research 29(4): 527-530.
Rogers, C. (1993). "Alkali-aggregate reactivity in Canada." Cement and concrete composites 15(1): 13-19.
Rogers, C., P. E. Grattan-Bellew, R. D. Hooton, J.Ryell and M. D. Thomas (2000). "Alkali-aggregate reactions in Ontario." Canadian Journal of Civil Engineering 27(2): 15.
Rogers, C. A. and R. Hooton (1991). "Reduction in mortar and concrete expansion with reactive aggregates due to alkali leaching." Cement, concrete and aggregates 13(1).
Rønning, T. F., J. Lindgård and S. K. Bremseth (2013). "ASR Assessment – Concrete Prism Testing within a Regulatory Framework." Procedia Engineering 57(0): 70-76.
Rots, J. G. and S. Invernizzi (2005). SEQUENTIALLY LINEAR SAW-TOOTH MODELLING OF REINFORCED STRUCTURES, Turin.
Šachlová, Š. (2013). "Microstructure parameters affecting alkali–silica reactivity of aggregates." Construction and Building Materials 49: 604-610.
Sahmaran, M. and V. C. Li (2008). "Durability of mechanically loaded engineered cementitious composites under highly alkaline environments." Cement and Concrete Composites 30(2): 72-81.
Saint-Pierre, F., P. Rivard and G. Ballivy (2007). "Measurement of alkali-silica reaction progression by ultrasonic waves attenuation." Cement and Concrete Research 37(6): 948-956.
Saouma, V. and L. Perotti (2005). ALKALI AGGREGATE REACTIONS IN DAMS ; Stress Analysis and Long Term Predictions. ASDSO Dam Safety Conference, New Orleans.
Sargolzahi, M., S. A. Kodjo, P. Rivard and J. Rhazi (2010). "Effectiveness of nondestructive testing for the evaluation of alkali–silica reaction in concrete." Construction and Building Materials 24(8): 1398-1403.
Saunders, M. R., J. A. Shields, M. R. Taylor and B. Hughes (1994). Digitizing Rocks?: Standardizing the process of geological Descriptive Using Workstations. European Petroleum Computer Conference. Aberdeen: 16.
Schlangen, E. and C. Copuroglu (2007). Concrete damage due to ASR; a new method to determine the properties of the expansive gel. Framcos6. Catania, Italy: 7.
Schlangen, E. and O. Copuroglu (2010). Modeling of expansion and cracking due to ASR with 3D lattice model. Framcos7, Jeju, Korea.
Schlangen, E., O. Copuroglu, O. andic-Cakir and E. Garcia-Diaz (2008). Modeling ASR Expansions based on measurements of local properties of expanding gel. International conference on alkali aggregate reaction. Trondheim, Norway: 8.
Schlangen, E. and E. J. Garboczi (1996). "New method for simulating fracture using an elastically uniform random geometry lattice." International Journal of Engineering Science 34(10): 1131-1144.
Schlangen, E. and E. J. Garboczi (1997). "Fracture simulations of concrete using lattice models: Computational aspects." Engineering Fracture Mechanics 57(2-3): 319-332.
Schlangen, E. and Z. Qian (2009). "3D modeling of fracture in cement-based materials." Journal of Multiscale Modelling 1(02): 245-261.
Schlangen, E. and K. Van Breugel (2005). Prediction of tensile strength reduction of concrete due to ASR. Third International Conference on Construction Materials, Performance, Innovations and Structural Implications. Vancouver, Canada: 10.
Schlangen, E. and J. van Mier (1992). "Simple lattice model for numerical simulation of fracture of concrete materials and structures." Materials and Structures 25(9): 534-542.
Schlangen, E. and J. G. M. van Mier (1992). "Experimental and numerical analysis of micromechanisms of fracture of cement-based composites." Cement and Concrete Composites 14(2): 105-118.
Schlangen, E. and J. G. M. Van Mier (1992). "Micromechanical Analysis of Fracture of Concrete." International Journal of Damage Mechanics 1(4): 435-454.
Scrivener, D. K. L. and J. F. Young (1997). Mechanisms of Chemical Degradation of Cement-based Systems.
Sellier, A., J. Bournazel and A. Mébarki (1995). "Une modélisation de la réaction alcalis-granulat intégrant une description des phénomènes aléatoires locaux." Materials and Structures 28(7): 373-383.
Shayan, A., A. Xu, G. Chirgwin and H. Morris (2010). "Effects of seawater on AAR expansion of concrete." Cement and Concrete Research 40(4): 563-568.
Shuguang, L., L. Yihui and C. Gaixin "Quantitative damage evaluation of AAR-affected concrete by DIP technique."
Siebel, E., M. Böhm, I. Borchers, C. Müller and J. Bokern (2006). "ASR test methods – comparability and practical relevance." Concrete Technology Reports 2004-2006: 13.
Sims, I. (2009). Alkali-silica reaction:UK experience. The Alkali-Silica Reaction in Concrete, Routledge. null.
Sims, I. and P. Nixon (2003). "RILEM Recommended Test Method AAR-0: Detection of Alkali-Reactivity Potential in Concrete—Outline guide to the use of RILEM methods in assessments of aggregates for potential alkali-reactivity." Materials and Structures 36(7): 472-479.
Sims, I. and P. Nixon (2003). "RILEM recommended test method AAR-1: detection of potential alkali-reactivity of aggregates—petrographic method." Materials and Structures 36(7): 480-496.
Singhal, A. C. and L. K. Nuss (1991). "Cable Anchoring of Deteriorated Arch Dam." Journal of Performance of Constructed Facilities 5(1): 19-36.
Slowik, V. and V. E. Saouma (2000). "Water pressure in propagating concrete cracks." Journal of Structural Engineering 126(2): 235-242.
Smaoui, N., M. A. Berube, B. Fournier, B. Bissonnette and B. Durand (2004). "Evaluation of the expansion attained to date by concrete affected by alkali-silica reaction. Part I: Experimental study." Canadian Journal of Civil Engineering 31(5): 826-845.
Smaoui, N., M. A. Bérubé, B. Fournier, B. Bissonnette and B. Durand (2005). "Effects of alkali addition on the mechanical properties and durability of concrete." Cement and Concrete Research 35(2): 203-212.
Smaoui, N., B. Fournier, eacute, rub, A. Marc, B. Bissonnette and B. Durand (2004). "Evaluation of the expansion attained to date by concrete affected by alkali-silica reaction. Part II: Application to nonreinforced concrete specimens exposed outside." Canadian Journal of Civil Engineering 31(6): 997-1011.
St. John, D. (2009). Alkali-aggregate reaction:New Zealand experience. The Alkali-Silica Reaction in Concrete, Routledge. null.
Stanton, T. E. (1940). "Influence of cement and aggregate on concrete expansion." Engineering News-Record.
Steffens, A., K. Li and O. Coussy (2003). "Aging Approach to Water Effect on Alkali--Silica Reaction Degradation of Structures." Journal of Engineering Mechanics 129(1): 50-59.
Struble, L. and S. Diamond (1981). "Unstable swelling behaviour of alkali silica gels." Cement and Concrete Research 11(4): 611-617.
Struble, L. J. and S. Diamond (1981). "Swelling Properties of Synthetic Alkali Silica Gels." Journal of the American Ceramic Society 64(11): 652-655.
Swamy, R. N. (1992). The Alkali-silica reaction in concrete. London, Blackie and Son.
Thomas, M. (2011). "The effect of supplementary cementing materials on alkali-silica reaction: A review." Cement and Concrete Research 41(3): 209-216.
Thomas, M., B. Fournier, K. Folliard, J. Ideker and M. Shehata (2006). "Test methods for evaluating preventive measures for controlling expansion due to alkali-silica reaction in concrete." Cement and Concrete Research 36(10): 1842-1856.
Trtik, P., B. Münch and P. Lura (2009). "A critical examination of statistical nanoindentation on model materials and hardened cement pastes based on virtual experiments." Cement and Concrete Composites 31(10): 705-714.
Tsuneki, I. (2009). "Alkali–silica reaction, pessimum effects and pozzolanic effect." Cement and Concrete Research 39(8): 716-726.
Ulm, F.-J., O. Coussy, L. Kefei and C. Larive (2000). "THERMO-CHEMO-MECHANICS OF ASR EXPANSION IN CONCRETE STRUCTURES." JOURNAL OF ENGINEERING MECHANICS 126(March): 10.
Ulm, F.-J., M. Vandamme, H. M. Jennings, J. Vanzo, M. Bentivegna, K. J. Krakowiak, G. Constantinides, C. P. Bobko and K. J. Van Vliet (2010). "Does microstructure matter for statistical nanoindentation techniques?" Cement and Concrete Composites 32(1): 92-99.
Van Aardt, J. and S. Visser (1977). "Calcium hydroxide attack on feldspars and clays: possible relevance to cement-aggregate reactions." Cement and Concrete Research 7(6): 643-648.
Van Mier, J. (1995). "Fracture mechanics of concrete: will applications start to emerge?" HERON-ENGLISH EDITION- 40: 147-162.
Van Mier, J. G. (1997). Fracture processes of concrete: assesment of material parameters for fracture models, CRC press.
Van Mier, J. G. M. (2012). Concrete Fracture: A Multiscale Approach, CRC Press.
van Mier, J. G. M., M. R. A. van Vliet and T. K. Wang (2002). "Fracture mechanisms in particle composites: statistical aspects in lattice type analysis." Mechanics of Materials 34(11): 705-724.
Vervuurt, A., B. Chiaia and J. Van Mier (1995). "Damage evolution in different types of concrete by means of splitting tests." HERON-ENGLISH EDITION- 40: 285-312.
Visser, J. H. M. (1998). Extensile hydraulic fracturing of (saturated) porous materials. PhD, Delft University of Technology.
Walker, H. N., D. S. Lane and P. E. Stutzman (2006). Petrographic Methods of Examining Hardened Concrete: A Petrographic Manual. Revised 2004.
Wang, H. and J. Gillott (1991). "Mechanism of alkali-silica reaction and the significance of calcium hydroxide." Cement and Concrete Research 21(4): 647-654.
Wang, X. H., S. Jacobsen, J. Y. He, Z. L. Zhang, S. F. Lee and H. L. Lein (2009). "Application of nanoindentation testing to study of the interfacial transition zone in steel fiber reinforced mortar." Cement and Concrete Research 39(8): 701-715.
West, G. (1996). Alkali-Aggregate Reaction in Concrete Roads & Bridges, Amer Society of Civil Engineers.
Wigum, B., P. Hagelia, M. Haugen and M. Broekmans (2000). Alkali aggregate reactivity of Norwegian aggregates assessed by quantitative petrography. Proceedings of the 11th International Conference on Alkali-Aggregate Reaction in Concrete, Québec.
Wigum, B. J. (1995). Alkali-aggregate reactions in concrete: properties, classification and testing of Norwegian cataclastic rocks, University of Trondheim.
Wigum, B. J. (1995). "Examination of microstructural features of Norwegian cataclastic rocks and their use for predicting alkali-reactivity in concrete." Engineering geology 40(3): 195-214.
Wigum, B. J. (2006). Alkali Aggregate Reactions ( AAR ) in Concrete . Testing , Mitigation & Recommendations . The Norwegian approach during 15 years of research, Quebec.
Wigum, B. J., J. Lindgård, L. T. Pedersen and B. Grelk (2006). Partner Report 2.1 - State-of-the art report: Key parameters influencing the alkali aggregate reaction. Partner Reports. Trondheim, SINTEF Building and Infrastructure. 1: 134.
Wood, J. G. (2008). "Improving guidance for engineering assessment and management of structures with AAR." Proc 13th ICAAR M. Broekmans B Wigum ed., NTNU Trondheim.
Wood, J. G. M. and E. C. Angus (1995). Montrose Bridge: Inspection assessment and remedial work to a 65 year old brdige with AAR. Structural faults conference. 1: 8.
Xi, Y. and H. Jennings (1997). "Shrinkage of cement paste and concrete modelled by a multiscale effective homogeneous theory." Materials and Structures 30(6): 329-339.
Xu, Z. and R. D. Hooton (1993). "Migration of alkali ions in mortar due to several mechanisms." Cement and Concrete Research 23(4): 951-961.
Yang, R. and N. R. Buenfeld (2001). "Binary segmentation of aggregate in SEM image analysis of concrete." Cement and Concrete Research 31(3): 437-441.
Yang, S., L. T. Shao, X. X. Guo, X. Liu and B. Y. Zhao (2012). "A Crack Segmentation Approach Using the Combination of Gray Thresholds and Fractal Feature." Advanced Materials Research 487: 622-626.
Zhang, C., A. Wang, M. Tang, B. Wu and N. Zhang (1999). "Influence of aggregate size and aggregate size grading on ASR expansion." Cement and Concrete Research 29(9): 1393-1396.
Zhang, P., S. Li and Z. Zhang (2011). "General relationship between strength and hardness." Materials Science and Engineering: A 529: 62-73.
Zhong, Z. and Z. Cheng (2008). "Fracture analysis of a functionally graded strip with arbitrary distributed material properties." International Journal of Solids and Structures 45(13): 3711-3725.
Zhou, C., K. Li and X. Pang (2012). "Geometry of crack network and its impact on transport properties of concrete." Cement and Concrete Research 42(9): 1261-1272.